称球问题

2个球和一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)



点击查看答案


HELOVE.NET-MBA试题答案: 点击查看答案

首先证明,如果有三个球P1,P2,P3,满足,要么P1较重,要么P2,P3中有一个较轻,并且有2个标准球,则质量不同的那个可以用一次天平找出。事 实上,取P1,P2与标准球比较,如果平衡则P3为较轻,如果P1,P2质量之和大于标准球则P1为较重的球,如果P1,P2质量之和小于标准球则P2为 较轻的球。同理可得,P1,P2,P3满足要么P1较轻,要么P2,P3中有一个较重的情况同样可以一次找出非标准球。 先分成三批(标记为A、B、C组),每批4个,取A,B两批称量。如果平衡,则质量不同的球在C组,可以用两次称量找出(先取两个与标准球作比较,如果平 衡再在余下的两个中取一个与标准球作比较,如果不平衡,则在其中取一个与标准球作比较。)如果不平衡(不妨假定A组轻于B组),则C组为标准球。将A,B 排列如下 1234 A○○○○ B○○○○ 取A1,A2,B1(A'组)与A3,A4,B4(B'组)分别放在天平两边称量。如果A'组轻于B'组,则要么A1,A2中有较轻的,要么B4为较重 的,由前面的证明知,第三次称量可以找出质量不同的那个。如果A'组重于B'组,则要么B1为较重的,要么A3,A4中有较轻的,同样可以找出质量不同的 那个。如果平衡,则B2,B3中有较重的,分别放在天平两端即可找出较重的。

关闭本窗口


点击获取更多精彩的内容

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

黑纳福

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: